
Understanding Plone Security
Plone Conference 2013

Brasília/Brasil

Fabiano Weimar dos Santos [Xiru]
xiru@xiru.org

mailto:xiru@xiru.org

12/24/13 Understanding Plone Security 2

Understanding Plone Security

Plone is a CMS known for being quite safe. However,
there are few people that know the reasons that make

it safer than other solutions.

12/24/13 Understanding Plone Security 3

A Common Argument

 Some people say that Plone is less used and tested
than other platforms, arguing something similar to the
Linus's Law formulated by Eric Raymond in his essay

and book "The Cathedral and the Bazaar" (1999).

12/24/13 Understanding Plone Security 4

Linus' Law

 "Given enough eyeballs, all bugs are shallow."

12/24/13 Understanding Plone Security 5

 or more formally...

"Given a large enough beta-tester and co-developer
base, almost every problem will be characterized
quickly and the fix will be obvious to someone."

12/24/13 Understanding Plone Security 6

In fact, software reviewing until reaching
consensus about its acceptance is an efficient

approach (even on security issues).

However...

12/24/13 Understanding Plone Security 7

However...

In "Facts and Fallacies about Software Engineering",
Robert Glass refers to the law as a "mantra" of the

open source movement, but calls it a fallacy.

Really?

12/24/13 Understanding Plone Security 8

Numbers

● On plone.org homepage we read: 340 core
developers and more than 300 solution providers in
57 countries.

● The best security track record of any major CMS.

– But for some people, Plone could be "full of
unknown bugs".

● Let's try to show that Plone security is not based on
obscurity.

12/24/13 Understanding Plone Security 9

Plone Source Code is
Developed to be Secure

 Plone security comes from Python and Zope
communities wisdom.

and Python is AWESOME!

12/24/13 Understanding Plone Security 10

Secure Code Development

● Secure code development is an art, but there is no
secret.

● Open Web Application Security Project (OWASP)
publish valuable documentation about Secure
Development.

12/24/13 Understanding Plone Security 11

OWASP Top 10 - 2013

● A1 Injection
● A2 Broken Authentication and Session Management
● A3 Cross-Site Scripting (XSS)
● A4 Insecure Direct Object References
● A5 Security Misconfiguration
● A6 Sensitive Data Exposure
● A7 Missing Function Level Access Control
● A8 Cross-Site Request Forgery (CSRF)
● A9 Using Components with Known Vulnerabilities
● A10 Unvalidated Redirects and Forwards

12/24/13 Understanding Plone Security 12

OWASP Top 10 x Plone: A1 Injection

● By default, Plone does not use relational databases.
So, it is impossible to inject SQL on Plone.

● Even very old solutions that integrate Zope with
relational databases (ZSQL) are planned to avoid
SQL injection.

● The vast majority of security issues of PHP based
CMS are usually SQL injection.

12/24/13 Understanding Plone Security 13

OWASP Top 10 x Plone: A2 Broken
Authentication and Session

Management

Problems usually happen when the integrator has the
responsibility of session verification.

On Plone, integrators use PlonePAS.

12/24/13 Understanding Plone Security 14

PlonePAS

12/24/13 Understanding Plone Security 15

How Plone Defines the Authentication
and Authorization?

● Plone uses Zope security structure.
● Users will access the application.

– if you are not authenticated, your user is
"Anonymous User" and your role will be
"Anonymous".

● Since everything is coded in classes (or modules)
Plone protects the access to Python methods.

12/24/13 Understanding Plone Security 16

How Plone protects the Python
methods?

● General rule is, every "public" method must:

– Have a docstring.
– Not begin with underscore.
– Have a permission.

12/24/13 Understanding Plone Security 17

If a method does not have a docstring OR
starts with an underscore OR
have a private permission OR

the user trying to access the method DO NOT have an
allowed role defined in a permission on the context

where the method is being executed

then the access is DENIED.

12/24/13 Understanding Plone Security 18

Complex?

● Rights are always granted by roles (not by users).
● Users will receive roles in contexts.

– It could be done during authentication or manually.
● Plone defines the concept of groups: a set of users.

– When a group receive roles in a context, all its group
members receive these roles.

– Groups is an abstraction to make privileges
management easier.

12/24/13 Understanding Plone Security 19

But who manages the roles allowed on
permissions?

● It needs to be done on every object.
● Solution: Workflows!

– A workflow definition will change the allowed
roles for a set of permissions when a transition
happens.

– Example: when a private document is published,
the "View" permission is changed to allow the
access of role “Anonymous”.

12/24/13 Understanding Plone Security 20

Workflow State Permissions

12/24/13 Understanding Plone Security 21

The Permissions Model

● It is complex to understand by new developers.

– But it is easy to understand with proper training.
● It is very flexible.
● It is secure!

– Why? Because all security verifications are
automatically made by Zope. The application security
management is not responsibility of the end user or the
sysadmin. Even the developer has little code to write
(and it helps to avoid security issues).

12/24/13 Understanding Plone Security 22

What else Plone does for you?

● XSS protection (A3)

– All input data is evil
– Content Filtering

● CSRF protection (A8)

– CSRF token on all forms (since Plone 3.x)
– Plone 2.5 does not have CSRF protection!

● All other security risks explained on OWASP Top 10 are
covered on the Plone "way of doing things", except
network traffic encryption.

12/24/13 Understanding Plone Security 23

Encryption

● NSA is watching us!
● Plone is being used on several portals with sensitive

information. Be worried about the way how your
servers are installed.

● Configure SSL/TLS is trick!

– Read the SSL/TLS Deployment Best Practices
– Online Validator: https://www.ssllabs.com/
– Deploy Forward Secrecy

https://www.ssllabs.com/

12/24/13 Understanding Plone Security 24

OWASP Top 10 2013
"The Plone Way" Summary

● A1 Injection

– SQL injection is impossible when you don't use SQL.
● A2 Broken Authentication and Session Management

– Plone has a secure and flexible authentication and session
management system. Its extension is made using PlonePAS.

● A3 Cross-Site Scripting (XSS)

– Plone do content transformation using filters to avoid evil input.

12/24/13 Understanding Plone Security 25

OWASP Top 10 2013
"The Plone Way" Summary

● A4 Insecure Direct Object References

– The security model avoids it by design.
● A5 Security Misconfiguration

– Plone ships with a secure set of configurations.
– It is a sysadmin responsibility to keep the system

updated, applying all security hotfixes and
updating the server operational system.

– http://plone.org/products/plone-hotfix/

http://plone.org/products/plone-hotfix/

12/24/13 Understanding Plone Security 26

Plone Hotfixes?

12/24/13 Understanding Plone Security 27

OWASP Top 10 2013
"The Plone Way" Summary

● A6 Sensitive Data Exposure

– Default Plone sensitive data (like user
passwords) are difficult to expose.

– Cryptography must be used to protect the
authenticated access on Plone. It is a sysadmin
responsibility.

● A7 Missing Function Level Access Control

– The security model avoids it by design.

12/24/13 Understanding Plone Security 28

OWASP Top 10 2013
"The Plone Way" Summary

● A8 Cross-Site Request Forgery (CSRF)

– All forms are protected by a CSRF token
● A9 Using Components with Known Vulnerabilities

– Plone has security fixes releases.
– Don't be lazy: install the hotfixes!
– Read the security announcements of: Linux kernel,

apache, nginx, squid, etc. There is really nasty stuff
in the wild.

12/24/13 Understanding Plone Security 29

OWASP Top 10 2013
"The Plone Way" Summary

● A10 Unvalidated Redirects and Forwards

– Plone avoids to use redirects (the example
scenario used on OWASP is uncommon).

12/24/13 Understanding Plone Security 30

First Conclusions

● Why Plone is Secure?
– Mostly because of design decisions.
– No SQL injection.
– All evil input is filtered to avoid XSS.
– All forms use CSRF tokens.
– Zope security machinery avoids "gambiarras".

12/24/13 Understanding Plone Security 31

First Conclusions

● Sometimes we find security vulnerabilities
(nobody is perfect). But when it happens, Plone
security team releases the Plone Hotfixes.

● Plone is secure because Python has a high quality
code (aka no JVM updates every week or 0-day
vulnerabilities luckily fixed someday).

12/24/13 Understanding Plone Security 32

Tips and Tricks

12/24/13 Understanding Plone Security 33

HTTP Cookie Options

● HttpOnly Cookie
– An HttpOnly session cookie will be used only

when transmitting HTTP or HTTPS requests

– Restrict access from non-HTTP APIs, such as
JavaScript

– Zope support added on 2.12.0b1
https://bugs.launchpad.net/zope2/+bug/367393

– Enabled by default on Plone (plone.session 3.0b4)

https://bugs.launchpad.net/zope2/+bug/367393

12/24/13 Understanding Plone Security 34

HTTP Cookie Options

● Secure Cookie
– Only used via HTTPS

– Makes the cookie less likely to be exposed to
cookie theft

– http://plone.org/documentation/kb/securing-plone

http://plone.org/documentation/kb/securing-plone

12/24/13 Understanding Plone Security 35

HTTP Cookie Options

12/24/13 Understanding Plone Security 36

What Plone could do better?

12/24/13 Understanding Plone Security 37

Useful HTTP headers

● X-Frame-Options, Frame-Options
– Example: X-Frame-Options: deny

– Provides Clickjacking protection.
● deny - no rendering within a frame
● sameorigin - no rendering if origin mismatch
● allow-from: DOMAIN - allow rendering if framed by

frame loaded from DOMAIN

– On nginx, use:
● add_header X-Frame-Options SAMEORIGIN;

12/24/13 Understanding Plone Security 38

Clickjacking

● Term to describe the attack that is "hijacking"
clicks.

● Uses multiple transparent layers to trick the
user to click a button or link on another page.

● Can be used to steal likes on Facebook,
followers on Twitter or much more dangerous
things.

12/24/13 Understanding Plone Security 39

Useful HTTP headers

● X-XSS-Protection
– Example: X-XSS-Protection: 1; mode=block

– Enables the Cross-site scripting (XSS) filter built
into most recent web browsers.

– It's usually enabled by default.
● Re-enable the filter if it was disabled by the user.

12/24/13 Understanding Plone Security 40

Useful HTTP headers

● Strict-Transport-Security
– Example: Strict-Transport-Security: max-

age=16070400; includeSubDomains

– Enforces secure (HTTP over SSL/TLS)
connections to the server.

– Reduces impact of bugs leaking session data and
defends against Man-in-the-middle attacks.

– Disables the ability for user's to ignore SSL
negotiation warnings.

12/24/13 Understanding Plone Security 41

Useful HTTP headers

● X-Content-Type-Options
– Example: X-Content-Type-Options: nosniff

– Prevents MIME-sniffing a response away from the
declared content-type.

– Reduces exposure to drive-by download attacks
and sites serving user uploaded content.

12/24/13 Understanding Plone Security 42

Useful HTTP headers

● X-Content-Security-Policy, X-WebKit-CSP
– Example: X-WebKit-CSP: default-src 'self'

– CSP prevents a wide range of attacks

– Defined on Content Security Policy 1.0
● W3C Candidate Recommendation 15 November 2012
● Declarative policy that lets the authors (or server

administrators) of a web application inform the client
from where the application expects to load resources.

● Enable blocking of inline JavaScript

12/24/13 Understanding Plone Security 43

Useful HTTP headers

● Who uses these headers?
– Google+

– Facebook

– Twitter

● Plone could set the headers using a proxy
– Apache mod_headers

– nginx proxy_set_header

– or we can add support in a sprint ;)

12/24/13 Understanding Plone Security 44

Thank You

Fabiano Weimar dos Santos [Xiru]
xiru@xiru.org
Twitter: @xiru

Got interested? Talk with me :)
yes, I'm looking for a new job

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

